FIXATION FOR THE TREATMENT OF THE DISTAL TIBIAL FRACTURES-MID TERM RESULTS AND COMPLICATIONS

Andonov Y, Kosev P Ruse University Teaching Hospital Bulgaria CHALLENGE 1

FRACTURE SEVERITY

CHALLENGE 2

SOFT TISSUE DAMAGE

SOLUTION?

OBJECTIVE

TO EVALUATE PROSPECTIVELY
THE EFFECTIVENESS OF CIRCULAR
WIRE EXTERNAL FIXATION IN THE
TREATMENT OF TIBIAL PILON
FRACTURES.

METHOD

1.Pre operative planning

- -orthogonal X-rays, CAT
- -localization of depression
- -reposition sequence
- -screw level and direction
- -K wire level and direction
- -frame construction

2. Articular reposition

-K wires for the fibula -percutaneous, limited open or arthrosopic manipulation of the articular fragments

-cannulated screw

-traction table

3.Frame application

-3-4 K wires, 10mm above the joint line -5mm bone screws in divergent planes in the cortical bone -3 K wires proximally

MATERIAL

- 30 distal tibial fractures
- 22 men and 6women
- Mean age 48,85years (range 23-76)
- 96% high energy fractures

- fall from height trafic accident
- domestic trauma

RESULTS

 ${
m AOFAS}$ (American Orthopeadic Foot and Ankle Society) max 100 points for objective and functional evaluation

TOTAL	RESULT
>90%	Excellent- no pain, normal gait, normal ROM, no swelling
80-89%	Good-minimal pain, normal gait, ¾ ROM, moderate swelling
70-79%	Satisfactory- pain on load bearing, limping gait,1/2ROM, moderate swelling
<70%	Poor-pain at rest, walking aid needed, 1/2ROM, pronounced swelling

poor

good

excellent

Results and complications

Fracture type		Number fractures	of Rating		Complications	
A1		1	Excellent- Good-	0 1		
A2		3	Excellent -	3	Delayed union - Pin track infection-	1 1
A3		2	Excellent - Good -	0 1	Delayed union- Pin track infection-	1 1
B1	B2	B3 0	0		0	
C1		4	Excellent - Good - Satisfactory-	2 1 1		
C2		9	Excellent - Good -	4 5	Delayed union Malposition Pin track infection	2 1 1
C3		11	Excellent - Good - Satisfactory - Poor-	4 5 1 1	Delayed union Malposition Arthrodesis- DVT- Pin track infection	1 1 1 1 3

COMPLICATIONS

*Checketts RG, Otterburn M, MacEachern AG. Pin track infection: defnition, incidence and prevention. Int J Orthop Trauma 1993. 3: 16-18

Malunion- 2 AO type C3 mLDTA 100° AO type C2 mLTDA 95° Arthrodesis- 1 AO type C3

CORRELATIONS

Articular reduction (P=0,0058< α =0,05) Functional recovery Fracture severity (P=0,1707> α =0,05) Functional recovery Fracture severity (P=0,0196< α =0,05) Articular reduction Age (P=0,0798> α =0,05) Fracture healing P<0,05=statistical significance

Younger patients with simpler fracture patterns and less soft tissue damage tended to have better results and shorter healing times

CONCLUSIONS

- Soft tissue damage is as important for the final outcome as the bone damage
- A strategy to reduce iatrogenic soft tissue damage leads to favorable (86% good and excellent) functional results
- Articular reduction is important for the final outcome
- There is a marked tendency for delayed healing of fractures with meta-diaphyseal extension (types A and C2)

DISCUSSION

- Low invasive method
- Low complication rate
- Early movement
- Early weight bearing
- Faster functional recovery

- Demanding articular reposition
- Increased risk for neuro-vascular damage
- Pin track infections
- Patient compliance

